67 research outputs found

    Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators

    Full text link
    This article studies two regularized robust estimators of scatter matrices proposed (and proved to be well defined) in parallel in (Chen et al., 2011) and (Pascal et al., 2013), based on Tyler's robust M-estimator (Tyler, 1987) and on Ledoit and Wolf's shrinkage covariance matrix estimator (Ledoit and Wolf, 2004). These hybrid estimators have the advantage of conveying (i) robustness to outliers or impulsive samples and (ii) small sample size adequacy to the classical sample covariance matrix estimator. We consider here the case of i.i.d. elliptical zero mean samples in the regime where both sample and population sizes are large. We demonstrate that, under this setting, the estimators under study asymptotically behave similar to well-understood random matrix models. This characterization allows us to derive optimal shrinkage strategies to estimate the population scatter matrix, improving significantly upon the empirical shrinkage method proposed in (Chen et al., 2011).Comment: Journal of Multivariate Analysi

    A Robust Statistics Approach to Minimum Variance Portfolio Optimization

    Full text link
    We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data

    Minimum variance portfolio optimization in the spiked covariance model

    No full text
    International audience—We study the design of minimum variance portfolio when asset returns follow a low rank factor model. Using results from random matrix theory, an optimal shrinkage approach for the isolated eigenvalues of the covariance matrix is developed. The proposed portfolio optimization strategy is shown to have good performance on synthetic data but not always on real data sets. This leads us to refine the data model by considering time correlation between samples. By updating the shrinkage of the isolated eigenvalues accounting for the unknown time correlation, our portfolio optimization method is shown to have improved performance and achieves lower risk values than competing methods on real financial data sets

    Signal from noise retrieval from one and two-point Green's function - comparison

    Full text link
    We compare two methods of eigen-inference from large sets of data, based on the analysis of one-point and two-point Green's functions, respectively. Our analysis points at the superiority of eigen-inference based on one-point Green's function. First, the applied by us method based on Pad?e approximants is orders of magnitude faster comparing to the eigen-inference based on uctuations (two-point Green's functions). Second, we have identified the source of potential instability of the two-point Green's function method, as arising from the spurious zero and negative modes of the estimator for a variance operator of the certain multidimensional Gaussian distribution, inherent for the two-point Green's function eigen-inference method. Third, we have presented the cases of eigen-inference based on negative spectral moments, for strictly positive spectra. Finally, we have compared the cases of eigen-inference of real-valued and complex-valued correlated Wishart distributions, reinforcing our conclusions on an advantage of the one-point Green's function method.Comment: 14 pages, 8 figures, 3 table

    Complete diagrammatics of the single ring theorem

    Full text link
    Using diagrammatic techniques, we provide explicit functional relations between the cumulant generating functions for the biunitarily invariant ensembles in the limit of large size of matrices. The formalism allows to map two distinct areas of free random variables: Hermitian positive definite operators and non-normal R-diagonal operators. We also rederive the Haagerup-Larsen theorem and show how its recent extension to the eigenvector correlation function appears naturally within this approach.Comment: 18 pages, 6 figures, version accepted for publicatio

    On the Transmit Beamforming for MIMO Wiretap Channels: Large-System Analysis

    Full text link
    With the growth of wireless networks, security has become a fundamental issue in wireless communications due to the broadcast nature of these networks. In this work, we consider MIMO wiretap channels in a fast fading environment, for which the overall performance is characterized by the ergodic MIMO secrecy rate. Unfortunately, the direct solution to finding ergodic secrecy rates is prohibitive due to the expectations in the rates expressions in this setting. To overcome this difficulty, we invoke the large-system assumption, which allows a deterministic approximation to the ergodic mutual information. Leveraging results from random matrix theory, we are able to characterize the achievable ergodic secrecy rates. Based on this characterization, we address the problem of covariance optimization at the transmitter. Our numerical results demonstrate a good match between the large-system approximation and the actual simulated secrecy rates, as well as some interesting features of the precoder optimization.Comment: Published in Lecture Notes in Computer Science 8317, pp. 90-102, 2014. (Proceedings of International Conference on Information-Theoretic Security (ICITS), Singapore, November 2013
    corecore